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TREND-FREE BLOCK DESIGNS : THEORY1

by

Ralph A. Bradl ey and Ching4ling Yeb
Florida State University

A common polynomial trend in one or more dimensions is assumed to exist

over the plots in each block of a classical experimental design. An analysis

of covariance model is assumed with trend components represented through use of

orthogonal polynomials. The objective is to construct new designs through the

assignment of treatments to plots within blocks in such a way that sums of

squares for treatments and blocks are calculated as though there were no trend

and sums of squares for trend components and error are calculated easily. Such

designs are called trend-free and a necessary and sufficient condition for a

trend-free design is developed. It is shown that these designs satisfy optimality

criteria among the class of connected designs with the same incidence matrix.

The analysis of variance for trend-free designs is developed. The paper concludes

with two examples of trend-free designs.

‘Research supported by the Army , Navy and Air Force under Office of Naval Research
Contract No. N000l4-76-C-0608. Reproduction in whole or in part is permitted for
any purpose of the United States Government.
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1. Motivation, introduction and summary. Various experimental designs have

been considered for the two-way elimination of heterogeneity, the latin square

being the best known. Iany experimental situations arise in which response may

be affected by the spatial or temporal position of the experimental unit or plot

within a block and, frequently, an assumption of a common polynomial trend of

specified degree over plots within blocks may be appropriate. The v x v latin

square may he used to eliminate the effects of a common, one-dimensional ,

polynomial trend to degree v - 1 over the r)lots in rows of the square. (!ues-

tions of criteria for and the optimality of other block designs, complete or

incomplete, that eliminate the effects of common polynomial trends of specified

degree over the plots within blocks are investigated. Examination of the exist-

ence and construction of the desired designs is deferred to a subsequent paper.

Experimental designs to be used in the presence of trends to avoid the

co~p.icatiots of analysis of covariance and to increase design efficiencies have

been developed by others. Cox (1951 , 1952, 1958) considered the assignment of

treatments to plots ordered in space or time without blocking and with a trend

extending over the entire sequence of plots. Box (1952) and Box and Hay (1953)

in similar experimental sequences investigated choices of levels of quantitative

factors. Hill (1960) combined the designs of Cox and Box to form new designs

to study the effects of both qualitative and quantitative factors in the presence

of trends. Daniel and llilcoxon (1966) and Daniel (1976, Chap. 15) provided

methods of sequencing the assignments of factorial treatment combinations to

experimental units to achieve better estimation of specified factorial effects,

again in the presence of a trend in time or distance. Phillips (1964, 1968a, 1968b)

illustrated the use of magic figures (magic squares, magic rectangles, etc) for
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the elimination of trend effects in certain classes of one-way, factorial, latin-

square, and grae~o-latin-square designs; a si:.i:~1e trend was assumed agaii~ to

affect a.i of the observations.

~le consider block designs to compare v treatments in b blocks of equal size

k ~ v such that each treatment occurs at most once in each block. A common

polynomial trend is assumed to exist over the plots in each block. The trend may

be in one or several dimensions and is expressed in terms of p � (k - 1) ortho-

gonal components. The appropriate classical fixed-effects model for the

genera . block design and its assumptions are used with the addition of orthogonal

terms representing the assumed trend. The problem is to assign treatments to

plots within blocks so that the known properties of the ordinary analysis of

variance for treatment and block sums of squares are preserved and variation

due to the trend may be removed from the error sum of squares. When the desired

designs exist, we shall call them trend-free designs. ~‘e shall abbreviate and,

for example , use TF~CB for a complete block design free of a common, one-

dimensional trend of degree p within blocks and TF BIB and TF~PBIB for similar

balanced and partially balanced incomplete block designs. Additional subscripts

may be added if the trend is in several dimensions.

In this paper, necessary and sufficient conditions for the existence of

trend-free block (TFB) designs are obtained, necessary analysis of variance is

deveboped,and optimality properties are demonstrated. Several examples of TPF~

designs are included but results on design construction are not included.

2. Notation, definitions and model. Let v treatments be applied to plots

arranged in b blocks, each of size k, k � v. Each plot receives only one

treatment and each treatment occurs at most once in a block. The plot positions
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in a block are indexed by rn-dimensional vectors of positive integers,

= (ti, ... , tm)i tu = 1, ... , S
u~ 

u = 1, ... , m, where s~ is the number of

plot positions in the u-th dimension, fls~ = k. The polynomial trend extending

over plots in each block is a function of the plot position 
~ 
and is expressed

as a lin’3ar function of rn-dimensional orthogonal polynomials of the form,

~~~ 
t~) = f l $a (tu)~ 

where 
~u
(tu) is a one-dimetasional

orthogonal polynomial of degree au satisfying the orthogonality conditions, for

u = 1, . .•,

S
(2.1) • C t )  = 0

t=l u
U

and

1 if cz = c a’,

(2.2) 4~ Ct1) $ctt~
tu) = 

u U

t 1  U U 0 if~~ ia ’.
U U U

Note that nvltidimensional orthogonal polynomials may be obtained as indicated
m

from one-dimensional ones and that k = fl s . Tables of one-dimensional ortho-
u=l u

gonal polynomials for equally spaced variables are given by Fisher and Yates (1957).

The mathematical riodel is a simple extension of the classical model for

general block designs, trend terms added, and is written

(2.3) YJ~ 
= + 

~ 

t. + + 0 
~ C~t) 

4

— 1, ... , b, ~ = (t1, ... , ta), t~ l~ . .
~~ ~u’ 

u = 1, ... , in,

where is the observation on plot position ~ of block J , ii, and are

respectively the usual mean, treatment and block parameters, A is an index set
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of p, rn-dimensional, non-zero vectors of the form ~~~, and 0~ is the regression

coefficient of •(~). The trend effect on plot position 
~ 
is ~ 0 $ (~), not

dependent on the particular block j. Designation of the treatment applied to

plot (j, ~
) is effected through the indicator function,

1 if treatment i on plot (j, ~~
(2.4) 5

~t 0 otherwise.

The errors 
~jt 

are assumed to be i.i.d. Irith zero means and they will be taken

to be normal, N(0, a2), in discussions of distribution theory below. The model

(2.3) will be regarded as a fixed-effects model unless specifically stated to

be otherwise in particular remarks.

Choices of values of specify particular block designs. The construction

of TFB designs is the determination of values of the to meet criteria to be

developed.

Some matrix notation will be needed. Let be the identity matrix of

order n, 0 be the m x n null matrix, J be the m x n matrix with unitmxn inXn

elements, ~~ be the n-dimensional column vector with unit elements, and ~ Q ~,

the I~ron”cker product of matrices ~ and ~~~. Lexicographic order is defined :

Definition 2.1. Two distinct vectors of non-negative integer elements,

1 (i1, 
~~~~~~ ~~~ 

and j = (j1, 
~~

• •
~~ 

j
~) are in lexicographic order if ~ is

ordered before j whenever i1 z 
~~ ~, j5_1 = j

~~1, i5 < for some s,

1 ~ s � n. Several distinct rn-element vectors are in lexicographic order if

all pairs of vectors are in lexicographic order.

The model (2.3) in matrix notation is

(2.5)

_ _  _ _  _ _  _ _ _-
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~ and ~ being bk-element column vectors with elements y~~ and c~~ in subscript

lexicographic order on (j ,  
~~ 

= (r 1, ..., T), ~~ = (8i,  
~~

= (eu , . . . ,  0~~), ~~ = 
~~~~ ~~~~‘ ~~~~‘ ~~ = 

~
p’ ~r’ ~B’ ~~~ ~ z Lbk’

~~~~ ~b~’ ~i3 
= Lb ~ ~k’ 

~e 
= 1b ~ ~~ where t~. is the k x v matrix with

as the i-th element in row t and ~ is the k x p matrix with + ( ~,) in row

and column ~ , i e ~~., and the rows of and ~ being in subscript lexicographic

order on t. For convenience, the vector-elements of ~ are taken also to be in

lexicographic order . Conditions (2.1), (2 .2) and (2.4) imply:

(2.6) = 91xp ’

(2. 7) =

(2 .8) = j = 1, .. .,  b.

Not e that each is a permutation matrix in view of (2.8) and the fact that all

elements of are 0 or 1.

Remark 2.1. It is necessary that p < k. From (2.7), since ~ is k x p, the

rank of ~ is p and it is necessary that k � p. If k = p, ~ would be non-singular

contradicted by (2.6). Hence p < k. The number of orthogonal polynomials

defining the trend in (2.3) must be less than the number of plots per block.

3. A necessary and sufficient condition for a TFB design. The sums of

squares for treatments (adjusted for blocks if necessary) , blocks (unadjusted) ,

and trend of the analysis of covar iance for the design modelled by (2.5) or 
-

(2.3) are considered . The genera l approach of Searle (1975) is used . A design

described by (2.5) is trend-free relative to the trend effects in that model
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when the indicated treatment and block sums of squares may be calculated as though

the trend effects were omitted from the model.

Some additional notation is needed . Let the reduction from the sum of squares

~~~~~ 
to the appropriate residual sum of squares due to a fitting of the general

linear model, 
~~ 

= + ~ , by least squares be denoted by R(y). Given an appro-

priate partition of ~ and ~ = 

~~l ~~ 
and y’ = (y~, ‘r~~. the model becomes

= 

~l~ l ~212 + ~ and R(y) = R (y1, ~~ 
Let

(3.1) R(y 2 1y 1) = R(y 1, 
~~ 

- R (y1)

represent the difference in reduction of sum of squares due to fittings of the

models, ~~ = + ~ and Y = + ~ . In our problem , R(rlp , 
~ , ~

) and R(Q j 1i , ~
)

represent the desired treatment and block sums of squares and R( 11p , ~
) and

R(~~~) re~nesent the corresponding sums of squares for the model like (2.5) with

trend effects deleted. The circumstances under which

(3.2) R(~ h.i, ~
, ~,) = R(t~p , 

~
)

and

(3.3) R(~ f~ , 9) = R (~ Jp )

are investigated.

The sums of squares in (3.2) and (3.3) are obtained by the Searle method.

We have

(3.4) R (rlu, ~ , ~
) =

(3.5) R(rI~ , ~) 
=

and
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(3.6) R(~ j p , 8) = R(~~p) = ~.Y ’ X
8X~Y - ~~-(X’y)

2 .

where

(3.7) = 1bk -

and

(3.8) = 
~~~~ 

i = 1, 2,

(3.9) 
~ p’ ~~~~

‘ 
~~~~~~ ~2 = 

~~
p, ~~~

and ~~ is a generalized inverse of a matrix ~ , ~~~~ = ~~. It is obvious from (3.6)

that the trend effects in the model (2.5) do not affect calculation of the

unadjusted block sum of squares nor do the values of the in 
~~

. This is

intuitively clear since trend effects have zero sums over plots within blocks

from (2.1) and the definition of The ordinary block sum of squares cal-

culated from block totals results from (3.6). But (3.4) and (3.5) depend on

and hence may depend on the when the model (2.5) applies. We show that

(3.5) does not depend on choices of the 
~~~ 

give a definition for the trend-free

concept, and develop a necessary and sufficient condition for a design to be

trend free .

Consider Xi(~!~~)~~!, i = 1, 2, in (3.7). Searle (1971, p. 20) shows that

this quantity is invariant to the choice of the generalized inverse and it may be

verified that we may take

(3.10) 
~ 

Q and 
~~~~ 

[0 1 
~
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Then

D - I  X X ’ XX ’-~l b k k-’8--8 b~ -0-e

(3.11) and

Q2 ~~bk -

Since = 

~R’ 
he diagonal matrix with i-th diagonal element r1, the number

of replications of treatment i, and = ~ , the v x b incidence matrix with

elements n.., n~. = 1, O,as treatment i is, is not, in block j, Q2 and do not

depend on the 
~~~~~~~~ 

Since = 
~
, the column vector of trea~~ent totals and

X ’X = R, the column vector with i-th element r~. ~~~~ 
does not depend on the

nor does (3.5). Thus (3.5) depends only on the usual observation totals and

design parameters and is the usual treatment sum of squares for the block design

calculated in the absence of trend terms in the model (2.5).

We continue with an explicit definition and a theorem.

Definition 3.1. A block design modelled by (2.5) is trend-free relative to

the trend in the model if R (tIu, 
~

, ~,
) = R(1~.i , ~

).

Theorem 3.1. A necessary and sufficient condition for a block design to be

trend-free is that

(3.12) ~~~~ = 9.

Proof. To prove necessity , equate (3.4) and (3.5), substitute from (3.7)

and (3.8), and obtain the equality,

(3.13) =

- -- - . -
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Pre- and post-multiplication of both sides of (3.13) by ~~ and 
~~ 

respectively

reduce the equality to = 
~2 

or, equivalently, to

(3.14) 
~~ ~ 2 

- 

~~ ~t 
=

Use of (3.11) in (3.14) yields (3.12) to complete the proof of necessity.

To prove sufficiency, (3.12) is used with (3.11) to show that = 
~2 

and

that ~4D1 = 

~T~2 
and the equality of (3.4) and (3.5) follows.

Remark 3.1. The design construction problem may be reformulated. Note that

= (flj, ..., ~~~ where each is a permutation matrix. Then (3.12) is

equivalent to

(3.15) = =

where = 

~~~~ 
The matrix has non-negative integer elements such that all

3
row sums are b and column sums are r , i = 1, . . . ,  v . The TFB design is con-

structed if ~~ satisfying (3.15) is found first and then if b permutatior

matrices i~ . are found such that ~~~. =-.3 j
~
3 +

Notice that (3.15) implies that

b s1 $
(3.16) . . .  • Ct) = 0,

j=l t =1 t=11 in

for all i = 1, ..., -! and all ~ £ / . In a TFB design, the total effect of each

trend component over the plots assigned to any treatment is zero.

4. Optimality properties of TPB designs. Let us suppose that the primary

purpose of an experiment is to compare treatment effects. Then it is desirable

in most experiments that the treatment design matrix be chosen such that each

r-- ~-- - r .  - - - - - - --_ -  - - -~~~~~~~~~~~~~ -
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possible treatment difference, r~ - r1,, i ~ i’, i i’ = 1, . . . ,  v, be estimable

under model (2.5) as stated or with trend components omitted. Designs with

such a property have been defined to be connected. The selectioa of~~ may be

viewed as a two-stage process. The first stage is the determination of a way of

blocking specified by the incidence matrix 
~ 

and the second stage is the

allocation of treatments to plots within blocks. In this section we decompose

the class of connected designs into subclasses with identical incidence matrices.

Given (2.5), optimality properties possessed by TFB designs within these sub-

classes are considered.

The following familiar optiinality definitions are considered over the

subclass of connected designs~~.~ ermode1 (2.5) with the same incidence matrix:

Ci) A design is V-optimal if the average variance of the estimators of all

elementary treatment contrasts, T~~ - ti,, is minimum.

(ii) A design is A-optimal if the trace of the covariance matrix of the

estimators of any v - 1 orthonormal treatment contrasts is minimum.

(iii) A design is D-optimal if the determinant of the covariance matrix of

(ii) is minimum.

(iv) A design is ~~ ptimal if the largest ei~enva1uc of the covariance

matrix of (ii) is minimum.

4.1. Estiniability and connectedness. Consider the model (2.5), first in

its general form, and a given non-null column vector u of constants with proper

dimension. It is well known that the definition of estiinability implies that

~‘y is estimable if and only if

(4.1) rk(u, ~‘~)
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We use (4.1) with proper selection of ~ to determine a necessary and sufficient

condition for the estimability of a linear function of treatment parameters and

consequently for the connectedness of a design.

The least-squares normal equation associated with (2.5) is ~~~~~ = 
~‘Lwhere

j is the estjrator of y. Since ~~~~~ = kib, ~Lb 
= J~~ 

and = 1bk~0 
= Qlxp ’

it reduces to

bk ~~‘ kA~ 2lxp p G

R D N X’X
(4.2) t-’O 

=

kLb ~~
‘ kLb 2bxp

0 X’X 0 bI ê W.px I -.0-.t ~pxb ~~ -

where G = 
~~~~ 

= ~~~Y, ~ = X~Y, and W = 
~~~~ 

are the observation total and vectors

of treatment, block and trend totals respectively. Let

(4.3) (Q~~ 1 L,’ - -

premultiply both sides of (4.2) by ~~, and obtain the reduced normal equation,

(4.4) = 2~

for the estimation of treatment parameters, where

(4.5) = - -

and

(4.6)

____________ __-
-- -— ——- -- —---__..-—— -~~._.w— .-—--—.-—-—— -. . - 

~
- - — - —-- - - — - - -



12

The matrix ~ in (4.4) plays a decisive role in the estimation of a linear

function of the treatment parameters and in the connectedness of a design under

model (2.5). A linear function 
~~~~~ 

may be represented by j~’y with

(4.7) ~~ ‘ = (0, 
~~

‘
‘ 2lxb ’ Q1~~

)
~

~ being a v-element column vector of constants. It may be shown that

(4.8) rk(~, ~‘~) 
= b + p + rk(~, ~ )

by an argument similar to that of Chakrabarti (1962) for a model like (2.5)

with trend effects absent. If a = 0-.

(4.9) rk(X’X) = b + p + rkC.

Use of (4.8) and (4.9) in (4.1) demonstrates that a necessary and sufficient con-

dition for the estimability of 
~~~~~ 

is that

(4.10) rk(~, ~ ) = rk~.

It follows further, through use of (4.10) and the argument by Raghavarao (1971,

Theorem 4.2.2), that a design represented by (2.5) is connected if and only if

rkC = - 1. For a TFB design C reduces to - ~~~~~~~~~ We summarize our

results:

Theorem 4.1. A TFB design under model (2.5) is connected if and only if

- 

~J’) = v - 1. If a TFB design exists, imposed on a connected block

design with a model like (2.5) with trend effects absent, the TFB design is

connected under (2.5).

— ~~~~~~~~-.~~~-- . -~~~~~- -~ 
.
~~~~~ - --_ _
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4.2. Optimality properties. The main theorem on optimality follows:

Theorem ~h2. If a TFB design exist s in a subclass of connected designs

with a given incidence matrix , the TFB design is V-, A-, D-, and E-optimal over

the subclass.

To prove Theorem 4.2, some preliminary results, definitions, and lemmas are

required.

It can be shown from (4.5) and (4.6) that

(4.11) E(Q) = Ct and Var(Q) = a2C.

If a’I is estimable, it is uniquely estimated by a’~ and hence

(4.12) E(a’~ ) = a ’t and Var(~’i) = a2a ’C~a

+where C represents the Moore-Penrose inverse of C.

If any two square matrices ~ and ~ of the same order are considered , we

define A � S to mean that ~~ 
- ~ is positive semidefinite. Evidently, A 9 means

that A is positive semidefinite. Let the trace, determinant and largest eigen-

value of ~ be trA, )AI~ 
and X~ (A) respectively. The following lemmas assist in

proof of Theorem 4.2.

Lemma 4.1. (Milliken and Akdeniz (1977)]. If A and ~ are two symmetric

matrices of the same order and ~ � Q, then ~ A~ if and only if rk(A) rk(~).

Lemma 4.2. For any two symmetric, positive seiuidefi.nite matrices A and ~

of the same order v and the same rank n, if A ~ B, then

(i) tr(~~) � tr(~~),

Ui) ~~~ ~
(iii) AM(~~) ~ 

AM(A) and XM(~~~~
) �
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where j~ is any n x v matrix such that is positive definite.

+ + + +Proof. Lemma 4.1 implies that ~ A and hence ~~ ~~‘ � 
~~ J~’

. The proof

of (i) is a consequence of the fact that each diagonal element of ( is not less
than the corresponding one of A~ . - The proof of (ii) follows from Ráo (1973, p. 70).

The proof of (ii.~.) follows from the fact , given by Rao (1973 , p. 62) , that, for

any symmetric matrix ij ,

AM
f ~) = sup ,,

where ~ is any non-null column vector of proper dimension.

Lemma 4.3. If A is a symmetric , positive semidefinite matrix of order v ,

then n tr(~j ) - � 0 for any n-square principal minor 
~j  of A.

Proof. Si.~i~e ~ is symmetric, positive semidefinite, so is M. Hence t4 may be

a covariance matrix of an n x 1 random vector, say ~~. Let ~~‘ = ~~~ . . . ,

and ~ ( rn . . ) .  The lemma follows fro~i the fact that the average variance of all

i < )
~ 

ip 3 = 1~ ~~ ~~~ [) [n tr~j - ~~~~],is nonnegative.

We may proceed to the proof of Theorem 4.2.

Proof of Theorem 4.2.  For a connected design, every elementary treatment

contrast , r~ - i < i’, i, i’ = 1, . . . ,  v , is estimable. From (4.12) , we

see that

Var (
~~ 

- 
~~,) = ( 11 

+ ~~~ — 2c~~~) a
2

where oil , i i~ 1, . . .,  v , is the (i , i’)-element of c ’ . Hence, the average

variance V of the estimators of all elenentary treatment contrasts is

- - . . - - -- - -_
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— 1 ~‘ ‘v =~~~~ 
•
~~~~~ • ~~~~ Var (r~ - Ti,)
i=l i ’=l

‘. J  
~~~

2 7-1 v ..
(4.13) = v(v - P + - 2cl’)

/ i=l i’=i+l

2 2
= 

~~~~~~~~~ ~ 
[v tr(C ’~) -

We compare the general matrix ~ with for the TFB design in the subclass

of block designs with common incidence matrix ~ and an existing TFB design:

- = � 0.

It follows from Lemma 4.1 that C~ - C~ � Q and hence

(4.14) v tr(C’ - ~~
) - 1’(C~ - C~)i � 0

by Lemma 4.3. Applying (4.13) to ~ and ~~, and using (4.14), we have,

~ 
~~2a~~~ (V tr (C’) - 

~~~~~~~~ ‘ - v (v 
2a~~ (v tr (

~~
) - “c;~.~i � 0,

which proves V-optimality.

Let ~, be any (v - 1) x v matrix such that 
~j ’  = and =

Then ~~ is a vector of v - 1 orthonormal treatment contrasts and Var(~j) =

Since C4 
� and ,~~‘1~’ � ~~~ A- , D- , and E-optimality of the TFB

design follow from (i), (ii), and (iii) respectively of Lenana 4.2.

The practical effect of Theorem 4.2  is to assure the user of TFB designs

that they will be optimal as indicated relative to model (2.5) in comparison with

the analysis of variance for the corresponding block design with treatments ran-

domized over plots within blocks . The user of the TFB designs benefits also from

the simpler available analysis of variance calculations.
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5. Analysis of variance of TFB designs. Calculations and justifications

for the analysis of variance of TFB designs may be developed by standard methods.

A TFB design is derived from a standard block design for which the model is

Y = + + X t  + r~ model (2.5) with trend terms deleted , and an analysis

of variance table is available. That standard analysis of variance is used to

obtain sums of squares for treatments (adjusted for blocks if necessary) and

blocks (unadjusted ) and the corrected total sum of squares for the analysis of

variance of the TFB design with model (2.5) . The sum of squares for trend with

p degrees of freedom , when model (2.5) applies , is ~ ‘Wb , )
~ 

= ~~~~~ The error

sum of squares is obtained by subtraction. The sum of squares for trend is

partitioned easily into components, W~/b , i = 1, . . . ,  p, each with one degree

of freedom.

While the paragraph above describes the necessary calculations, the general

analysis of variance for a TFB design is displayed in Table 1. In that table,

G, T and ~ are as defined for (4.2) and

F = 
~~~~~~~~~~~~ 

- 

~~~~~~~ ç~ = -

The sums of squares are independent and, when divided by ~2 , have chi-square

distribut ions with degrees of freedom (d.f . )  given in Table 1 and non-centrality

parameter s obtainable from the expected mean squares of the table , expected

mean square divided by a2 less one.

Table 1 is simplified in well known simple situations. For a TFCB design,

k - v and r. - b , i. 1, ..., v , and then

F = v ~ ’(ib~~~~~1,~~)b ~~~= b c ,~~~!.y4) .

- - !G2) ~~~~~~~~ = b1’U.~, 
-

and rk v - 1.
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For a TFBIB design with parameters V , b, k, r and A ,

- 

- 

~ij ~
)
~ Q’c02 =

1
~‘ i - ’(A ,-~~~i~

)
~ and rk~ 1 = v - l.

TABLE 1

General Analysis of Variance for a TFB Design, Model (2.5)

Source of ci. f. Sum of Squares Expected ~1ean 
—

Variat ion Square

Blocks b-l (B’B-~G
2)/k o2+F/(b-l)

(unadjusted)

Treatments rkc0 a2+(t’C~~)frIçQ0(adjusted)

Trend Term 1 1 W~/b a2+bO~

Trend Term p 1 W2/b

Error bk-b-p-rkç0 By Subtraction a2

Total bk-i

Remark 5.1. The TFB designs developed for model (2.5) are trend-free also

if treatment or block effects are random rather than fixed. Theorem 3.1 holds

for random or mixed effects models since condition (3.12) does not depend on

distributional assumptions on ~~. Expected mean squares in Table 1 would require

minor reexpression for a model with random treatment or block effects. When

block effects are random and treatment effects are fixed, treatment comparisons

may still be made and the demonstrated optimality properties of TFB designs

apply.

_ _ _
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6. Examples. Given an incidence matrix for a block design and a polynomial

trend, a TFR design may or may not exist. Existence theorems and design con-

struction will be discussed in a subsequent paper. Two examples are given

below, one a TF2CB design and one a TF1BIB design. In the arrays below, letters

represent treatments and rows represent blocks . Orthogonal trend components ,

without normalization, are given in the upper rows of the arrays.

Example 1: A TF2CB design, 
v = 7, b = 4, p = 2:

-7 -5 -3 -l 1 3 5 7

7 1 —3 -5 —5 -3 1 7

A B C D B F G H

G H B A C B F B

F E H G B A B C

D C E F H G A B

Example 2: A TF1BIB design, v= 5, b = 10, k = 3, r = 6, A = 3, p = 1:

-l 0 1

A B C

A B D

A B E

C D A
C B A
D E A
D B C
B B C
E B D
C B B
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